
V 6.0.1 – 20230103

TABLE OF CONTENTS

Introduction to ProBuilder__1

Chapter I: Fundamentals___2

Using ProBuilder...2

Indicator creation quick tutorial..2

Programming window keyboard shortcuts..5

Specificities of ProBuilder programming language...6

Financial constants..7

Price and volume constants adapted to the timeframe of the chart..7

Daily price constants...8

Temporal constants...8

Constants derived from price...12

The Undefined constant..13

How to use pre-existing indicators?..13

Adding customizable variables..16

Chapter II: Math Functions and ProBuilder instructions________________18

Control Structures...18

Conditional IF instruction...18

One condition, one result (IF THEN ENDIF)...18

One condition, two results (IF THEN ELSE ENDIF)...18

Sequential IF conditions... 18

Multiple conditions (IF THEN ELSE ELSIF ENDIF)..19

Iterative FOR Loop..21

Ascending loop (FOR, TO, DO, NEXT)...21

Descending loop (FOR, DOWNTO, DO, NEXT)...22

Conditional WHILE Loop...23

BREAK...24

With WHILE.. 24

With FOR.. 24

CONTINUE..25

With WHILE.. 25

With FOR.. 25

ONCE..26

Mathematical Functions..27

Common unary and binary Functions...27

Common mathematical operators...27

V 6.0.1 – 20230103 www.prorealtime.com 2 / 64

Charting comparison functions..27

Summation functions...28

Statistical functions..28

Logical operators...28

ProBuilder instructions..29

RETURN..29

Comments...29

CustomClose...29

CALCULATEONLASTBARS...29

CALL..30

AS..30

COLOURED..30

Drawing instructions..32

Additional parameters..35

Multi-period instructions..38

List of available time frames..40

Arrays (Data tables)..41

 Specific functions..41

Chapter III: Practical aspects_______________________________________43

Create a binary or ternary indicator : why and how ?...43

Creating stop indicators to follow a position..44

Static Take Profit STOP...45

Static STOP loss..45

Inactivity STOP..46

Trailing Stop...47

Chapter IV: Exercises___48

Candlesticks patterns..48

Indicators...49

Glossary__51

V 6.0.1 – 20230103 www.prorealtime.com 3 / 64

Warning: ProRealTime does not provide investment advisory services. This document is not in any
case personal or financial advice nor a solicitation to buy or sell any financial instrument. The
example codes shown in this manual are for learning purposes only. You are free to determine all
criteria for your own trading. Past performance is not indicative of future results. Trading systems
may expose you to a risk of loss greater than your initial investment.

V 6.0.1 – 20230103 www.prorealtime.com 4 / 64

In t roduct ion to ProBui ld er

Introduction to ProBuilder

ProBuilder is ProrealTime's programming language. It allows you to create personalized technical indicators,
trading strategies (ProBacktest) or screening programs (ProScreener). Two specifics manuals exist for
ProBacktest and ProScreener due to some specific charateristics of each of these modules.

ProBuilder is a BASIC-type programming language, very easy to handle and exhaustive in terms of available
possibilities.

You will be able to create your own programs using the quotes from any instrument provided by
ProRealTime. Some basic available elements include:

Opening of each bar: Open

Closing of each bar: Close

Highest price of each bar: High

Lowest price of each bar: Low

Volume of each bar: Volume

Bars or candlesticks are the common charting representations of real time quotes. Of course, ProRealTime
offers you the possibility of personalizing the style of the chart. You can use Renko, Kagi, Heikin-Ashi and
many other styles.

ProBuilder evaluates the data of each price bar starting with the oldest one to the most recent one, and then
executes the formula developed in the language in order to determine the value of the indicators on the
current bar.

The indicators coded in ProBuilder can be displayed either in the price chart or in an individual one.

In this document, you will learn, step by step, how to use the available commands necessary to program in
this language thanks to a clear theoretical overview and concrete examples.

In the end of the manual, you will find a Glossary which will give you an overall view of all the ProBuilder
commands, pre-existing indicators and other functions completing what you would have learned after reading
the previous parts.

Users more confident in their programming skills can skip directly to chapter II or just refer to the Glossary to
quickly find the information they want.

For those who are less confident, we recommend watching our video video tutorial entitled "Programming
simple and dynamic indicators" and reading the whole manual.

If you have any questions about ProBuilder, you can ask them to our ProRealTime community on the
ProRealCod e forum , where you will also find an online documentation with many examples.

We wish you success and hope you will enjoy the manual!

The ProRealTime team

V 6.0.1 – 20230103 www.prorealtime.com 1 / 64

https://www.prorealcode.com/prorealtime-documentation/
https://www.prorealcode.com/forums/
https://www.prorealcode.com/forums/
https://www.youtube.com/watch?v=Q8vEg3FvuMo&list=PLGw_ZtCHrQ9h0IfycC4sqURh95Fks7g09
https://www.youtube.com/watch?v=Q8vEg3FvuMo&list=PLGw_ZtCHrQ9h0IfycC4sqURh95Fks7g09

Chapter I : Fundamenta ls

Chapter I: Fundamentals

Using ProBuilder

Indicator creation quick tutorial

The indicator programming area is available from the "Indicator" button located in upper left corner of each
chart in your ProRealTime platform or from the menu Display > Indicators/Backtest.

The indicators management window will be displayed. You will then be able to:

Display a pre-existing indicator

Create a personalized indicator, which can be used afterwards on any security

If you choose the second possibility, click on "Create" to access the programming window.

At that time, you will be able to choose between:

Programming directly an indicator in the text zone designed for writing code or

Using the help function by clicking on "Insert Function" (icon), this will open a new window in which

you can find all the functions available. This library is separated in 8 categories, to give you constant
assistance while programming.

V 6.0.1 – 20230103 www.prorealtime.com 2 / 64

Chapter I : Fundamenta ls

Let’s take for example the first ProBuilder key element: the "RETURN" function (available in the "ProBuilder

function list" (see the image below).

Select the word "RETURN" and click on "Add". The command will be added to the programming zone.

RETURN allows you to display the result

V 6.0.1 – 20230103 www.prorealtime.com 3 / 64

Chapter I : Fundamenta ls

Suppose we want to create an indicator displaying the Volume. If you have already inserted the function
"RETURN", then you just need to click one more time on "Insert function". Next, click on "Constants" in the
"Categories" section, then in the right side of the window, in the section named "Functions", click on
"Volume". Finally, click on "Add". Don't forget to add a space in between each instruction as shown below.

Before clicking on the "Apply to DAX40" button, specify at the top of the window the name of your
indicator: here we have called it "DAX Volume". Finally, click on "Apply to DAX" and you will see the chart
with your indicator.

V 6.0.1 – 20230103 www.prorealtime.com 4 / 64

Chapter I : Fundamenta ls

Programming window keyboard shortcuts

The programming window has a number of useful features that can be accessed by keyboard shortcuts:

Select all (Ctrl + A): Select all text in the programming window

Copy (Ctrl + C): Copy the selected text

Paste (Ctrl + X): Paste copied text

Undo (Ctrl + Z): Undo the last action in the programming window

Redo (Ctrl + Y): Redo the last action in the programming window

Find / Replace (Ctrl + F): Find a text in the programming window / replace a text in the programming
window

Comment / Uncomment (Ctrl + R): Comment the selected code / Uncomment the selected code
(commented code will be preceded by "//" and colored grey. It will not be taken into account when the code
is executed).

Auto-complete (Ctrl+Space): Allows you to display suggested instructions or keywords

For Mac users, the same keyboard shortcuts can be accessed with the "Command" key in place of the "Ctrl"
key. Most of these features can also be accessed by right-clicking in the programming window.

V 6.0.1 – 20230103 www.prorealtime.com 5 / 64

Chapter I : Fundamenta ls

Specificities of ProBuilder programming language

Specificities

The ProBuilder language allows you to use many classic commands as well as sophisticated tools which are
specific to technical analysis. These commands will be used to program from simple to very complex
indicators.

The main ideas to know in the ProBuilder language are:

It is not necessary to declare variables

It is not necessary to type variables

There is no difference between capital letters and small letters

We use the same symbol "=" for mathematical equality and to attribute a value to a variable

What does this mean?

Declaring a variable X means indicating its existence. In ProBuilder, you can directly use X without
having to declare it. Let’s take an example:

With declaration: let be variable X, we attribute to X the value 5

Without declaration: We attribute to X the value 5 (therefore, implicitly, X exists and the value 5 is attributed
to it)

In ProBuilder you just need to write: X=5

Typing a variable means defining its nature. For example: is the variable an integer (ex: 3; 8; 21; 643;
…), a a decimal number (ex: 1.76453534535…), a boolean (RIGHT=1, WRONG=0),…?

In ProBuilder, you can write your command with capital letters or small letters. For example, the group
of commands IF / THEN / ELSE / ENDIF can be written iF / tHeN / ELse / endIf (and many other
possibilities!)

Affect a value to a variable means give the variable a value. In order to understand this principle, you
must assimilate a variable with an empty box which you can fill with an expression (ex: a number). The
following diagram illustrate the Affectation Rule with the Volume value affected to the variable X:

X Volume
As you can see, we must read from right to left: Volume is affected to X.

If you want to write it under ProBuilder, you just need to replace the arrow with an equal sign:

X = Volume
The same = symbol is used:

For the affectation of a variable (like the previous example)

As the mathematical comparison operator (1+ 1= 2 is equivalent to 2 = 1 + 1).

V 6.0.1 – 20230103 www.prorealtime.com 6 / 64

Chapter I : Fundamenta ls

Financial constants

Before coding your personal indicators, you must examine the elements you need to write your code such as
the opening price, the closing price, etc.

These are the "fundamentals" of technical analysis and the main things to know for coding indicators.

You will then be able to combine them in order to draw out some information provided by financial markets.
We can group them together in 5 categories:

Price and volume constants adapted to the timeframe of the chart

These are the "classical" constants and also the ones used the most. They report by default the value of the
current bar (whatever the timeframe used).

Open: Opening price of the current bar

High: Highest price of the current bar

Low: Lowest price of the current bar

Close: Closing price of the current bar

Volume: The number of securities or contracts exchanged during the current bar

DECREASING CANDLESTICK INCREASING CANDLESTICK

Example: Range of the current bar
a = High

b = Low

MyRange = a - b

RETURN MyRange

If you want to use the information of previous bars rather than the current bar, you just need to add between
square brackets the number of bars that you want to go back into the past.

Let’s take for example the closing price constant. Calling the the price is done in the following way:

Value of the closing price of the current bar: Close

Value of the closing price of the bar preceding the current bar: Close[1]

Value of the closing price of the nth bar preceding the current one: Close [n]

This rule is valid for any constant. For example, the opening price of the 2nd bar preceding the current can
be expressed as: Open[2].

The reported value will depend on the displayed timeframe of the chart.

V 6.0.1 – 20230103 www.prorealtime.com 7 / 64

Chapter I : Fundamenta ls

Daily price constants

Contrary to the constants adapted to the timeframe of the chart, the daily price constants refer to the value of
the day, regardless of the timeframe of the chart.

Another difference between Daily price constants and constants adapted to the timeframe of the chart is that
the daily price constants use parentheses and not square brackets to call the values of previous bars.

DOpen(n): Opening price of the nth day before the one of the current bar

DHigh(n): Highest price of the nth day before the one of the current bar

DLow(n): Lowest price of the nth day before the one of the current bar

DClose(n): Closing price of the nth day before the one of the current bar

Note: if "n" is equal to 0, "n" refers to the current day. The maximum and minimum values are not yet
definitive for n=0, we will obtain results which can change during the day depending on the minimum and
maximum reached by the value.

The constants adapted to the timeframe of the chart use square brackets while the daily price

constants use brackets.

 Close[3] The closing price 3 periods ago

 Dclose(3) The closing price 3 days ago

Temporal constants

Time is often a neglected component of technical analysis. However traders know very well the importance
of some time periods in the day or dates in the year. It is possible in your programs to take into account time
and date and improve the efficiency of your indicators. The Temporal constants are described hereafter:

Date: indicates the date of the close of each bar in the format YearMonthDay (YYYYMMDD)

Temporal constants are considered by ProBuilder as whole numbers. The Date constant, for example, must
be used as one number made up of 8 figures.

Let’s write down the program:
RETURN Date

Suppose today is July 4th, 2020. The program above will return the result 20200704.

The date can be read in the following way:

20200704 = 2020 years 07 months and 04 days.

Note that when writing a date in the format YYYYMMDD, MM must be between 01 and 12 and DD must be
between 01 and 31.

V 6.0.1 – 20230103 www.prorealtime.com 8 / 64

Chapter I : Fundamenta ls

Time: indicates the time of closing of each bar in the format HHMMSS (HourMinuteSecond)

Example:
RETURN Time

This indicator shows us the closing time of each bar in the format HHMMSS:

Time can be read as follows:

160000 = 16 hours 00 minutes and 00 seconds.

Note that when writing a time in the format HHMMSS, HH must be between 00 and 23, MM must be between
00 and 59 and SS must be also between 00 and 59.

It is also possible to use Time and Date in the same indicator to do analysis or display results at a precise
moment. In the following example, we want to limit our indicator to the date of October 1st at precisely 9am
and 1 second:
a = (Date = 20081001)

b = (Time = 090001)

RETURN (a AND b)

The following constants work the same way:

Timestamp: UNIX date and time (number of seconds since January 1st, 1970) of the close of each bar.

Second: Second of the close of each bar (between 0 and 59).

Minute: Minute of the close of each bar (from 0 to 59): Only for intraday charts.

Hour: Hour of the close of each bar (from 0 to 23): Only for intraday charts.

Day: Day of the months of the closing price of each bar (from 1 to 28 or 29 or 30 or 31)

Month: Month of the closing price of each bar (from 1 to 12)

Year: Year of the closing price of each bar

DayOfWeek: Day of the Week of the close of each bar (0=Sunday, 1=Monday, 2=Tuesday,
3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday)

V 6.0.1 – 20230103 www.prorealtime.com 9 / 64

https://en.wikipedia.org/wiki/Unix_time

Chapter I : Fundamenta ls

Derivative constants also exist for Open :

OpenTimestamp: UNIX date and time of the open of each bar.

OpenSecond : Second of the open of each bar (between 0 and 59).

OpenMinute : Minute of the open of each bar (between 0 and 59).

OpenHour : Time of the open of each bar (between 0 and 23).

OpenDay: Day of the month of the open of each bar (between 1 and 28 or 29 or 30 or 31).

OpenMonth : Month of the open of each bar (between 1 and 12).

OpenYear: Year of the open of each bar.

OpenDayOfWeek: Day of the week at the open of each bar (0=Sunday,1=Monday, 2=Tuesday,
3=Wednesday, 4=Thursday, 5=Friday,6=Saturday).

OpenTime: HourMinuteSecond encoded as HHMMSS indicating the opening time of each bar.

OpenDate: Date (YYYYMMDD) of the open of the current bar.

Example of the use of these constants:
a = (Hour > 17)

b = (Day = 30)

RETURN (a AND b)

CurrentHour : Current time (market time).

CurrentMinute: Current minute (of the local market).

CurrentMonth: Current month (of the local market)

CurrentSecond: Current second (of the local market)

CurrentTime: Current HourMinuteSecond (of the local market)

CurrentYear: Current Year (of the local market)

CurrentDayOfWeek: Current Day of the week with the market time zone as a reference

The difference between the "Current" constants and the "non-Current" constants presented above is the
"Current" aspect.

The following picture brings to light that difference (applied on the CurrentTime and Time constants). We can
highlight the fact that for "Current" constants, we must set aside the time axis and only take in consideration the
displayed value (the value of the current time is displayed over the whole history of the chart).

V 6.0.1 – 20230103 www.prorealtime.com 10 / 64

https://en.wikipedia.org/wiki/Unix_time

Chapter I : Fundamenta ls

Time indicates the closing time of each bar.

 CurrentTime indicates the current market time.

If you want to set up your indicators with counters (number of days passed, number of bars passed etc…),
you can use the Days, BarIndex and IntradayBarIndex constants.

Days: Counter of days since 1900

This constant is quite useful when you want to know the number of days that have passed. It is particularly
relevant when you work with an (x) tick or (x) volume view.

The following example shows you the number of days passed since 1900.
RETURN Days

(Be careful not to confuse the constants "Day" and "Days").

BarIndex: Counter of bars since the beginning of the displayed historical data

The counter starts from left to right and counts each bar, including the current bar. The first bar loaded is
considered bar number 0. Most of the time, BarIndex is used with the IF instruction presented later in the
manual.

IntradayBarIndex: Counter of intraday bars

The counter displays the number of bars since the beginning of the day and then resets to zero at the
beginning of every new day. The first bar of the counter is considered bar number 0.

V 6.0.1 – 20230103 www.prorealtime.com 11 / 64

Chapter I : Fundamenta ls

Let’s compare the two counter constants with two separated indicators:
RETURN BarIndex

and
RETURN IntradayBarIndex

We can clearly see the difference between them: IntradayBarIndex resets itself to zero at the beginning of
every new day.

Constants derived from price

These constants allows you to get more complete information compared to Open, High, Low and Close, since they
combine those prices so to emphasize some aspects of the financial market psychology shown on the current bar.

Range: difference between High and Low.

TypicalPrice: average between High, Low and Close

WeightedClose: weighted average of High (weight 1), Low (weight 1) and Close (weight 2)

MedianPrice: average between High and Low

TotalPrice: average between Open, High, Low and Close

Range shows the volatility of the current bar, which is an estimation of how nervous investors are.

WeightedClose focuses on the importance of the closing price.

TypicalPrice and TotalPrice emphasize intraday financial market psychology since they take 3 or 4
predominant prices of the current bar into account.

MedianPrice is the median price of the candlestick, calculated by computing the average of the High and
Low.

Range in %:
MyRange = Range

Calcul = (MyRange / MyRange[1] - 1) * 100

RETURN Calcul

V 6.0.1 – 20230103 www.prorealtime.com 12 / 64

Chapter I : Fundamenta ls

The Undefined constant

The keyword Undefined allows you to indicate to the software not to display the value of the indicator.

Undefined: undefined data (equivalent to an empty box)

You can find an example later in the manual.

How to use pre-existing indicators?

Up until now, we have described you the possibilities offered by ProBuilder concerning constants and how to
call values of bars of the past using these constants. Pre-existing indicators (the ones already programmed
in ProRealTime) function the same way and so do the indicators you will code.

ProBuilder indicators are made up of three elements which syntax is:

NameOfFunction [calculated over n periods] (applied to which price or indicator)

When using the "Insert Function" button to look for a ProBuilder function and then enter it into your program,
default values are given for both the period and the price or indicator argument. Example for a moving
average of 20 periods :

Average[20](Close)

The values can be modified. For example, we can replace the 20 bars defined by default with any number of
bars (ex: Average[10], Average[15], Average[30], …, Average[n]). In the same way, we can replace "Close"
with "Open" or RSI (Relative strength index). This would give us for example:

Average[20](RSI[5](Close))
Here are some sample programs:

Program calculating the exponential moving average over 20 periods applied to the closing price:
RETURN ExponentialAverage[20](Close)

Program calculating the weighted moving average over 20 bars applied to the typical price
mm = WeightedAverage[20](TypicalPrice)

RETURN mm

Program calculating the Wilder average over 100 candlesticks applied to the Volume
mm = WilderAverage[100](Volume)

RETURN mm

Program calculating the MACD (histogram) applied to the closing price.

The MACD is built with the difference between the 12-period exponential moving average (EMA) minus the
26-period EMA. Then, we make a smoothing with an exponential moving average over 9 periods and applied
to the MACD line to get the Signal line. Finally, the MACD is the difference between the MACD line and the
Signal line.
// Calculation of the MACD line

MACDLine = ExponentialAverage[12](Close) - ExponentialAverage[26](Close)

// Calculation of the MACD Signal line

MACDSignalLine = ExponentialAverage[9](MACDLine)

// Calculation of the difference between the MACD line and its Signal

MACDHistogram = MACDLine - MACDSignalLine

RETURN MACDHistogram

V 6.0.1 – 20230103 www.prorealtime.com 13 / 64

Chapter I : Fundamenta ls

Calculation of an average with two parameters

You also have the possibility to use a second parameter with the average function (which indicates the type
of average to use). We obtain the following formula :

Average [Nbr. of periods, Type of average]

The parameter Type of average designates, as its name indicates, the type of average that will be used.
There are 9 of them and they are indexed from 0 to 8 :

0=Single 4=Triangular 8=Zero delay

1=Exponential 5=Least Squares

2=Weighted 6=Time series

3=Wilder 7=Hull

Calculation of Ichimoku lines

Since the Ichimoku indicator includes many lines, some of these lines have been introduced separately in the
ProBuilder language to allow you to get the most out of this indicator.

The lines as follows:
SenkouSpanA[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]

TenkanSen [TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]

KijunSen[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]

SenkouSpanB[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]

With for each line the usual Ichimoku parameters:

Tenkan: alert line, (high point + low point)/2 over the last n periods

Kijun: signal line, (high point + low point)/2 over the last n periods

SenkouSpanB: long term average point projection, (high point + low point)/2 over the last n periods

V 6.0.1 – 20230103 www.prorealtime.com 14 / 64

Chapter I : Fundamenta ls

Calculation of PRT Bands

PRT Bands is a visual indicator that simplifies the detection and monitoring of trends. It is exclusive to the
ProRealTime platform.

It can help you to:

detect a reversal of trends

identify and follow an upward trend

measure the intensity of the trend

find potential entry and exit points

Here are the different PRT Bands data available in the ProBuilder language:

PRTBANDSUP: returns the value of the top line of the indicator

PRTBANDSDOWN: returns the value of the bottom line of the indicator

PRTBANDSSHORTTERM: returns the value of the short term (thick) line of the indicator

PRTBANDSMEDIUMTERM: returns the value of the medium term (thin) line of the indicator

Learn more about the PRT Bands indicator

V 6.0.1 – 20230103 www.prorealtime.com 15 / 64

https://www.prorealtime.com/en/help-manual/prorealtime-bands

Chapter I : Fundamenta ls

Adding customizable variables

When you code an indicator, you may want to use customizable variables. The variables option in the upper-
left corner of the window allows you to assign a default value to an undefined variable in your program and
change its value in the settings window of the indicator without modifying the code of your program.

Let’s calculate a simple moving average on 20 periods:
RETURN Average[20](Close)

In order to modify the number of periods for the calculation directly from the indicator "Settings" interface,
replace 20 with the variable "n":
RETURN Average[n](Close)

Then, click on "Add" next to "Variables" and another window named "Variable definition" will be displayed.

Enter the name of your variable, here " n " and click on " Add ", you can then fill in a Type and a Default
Value as shown in the example below :

Click on the "Close" button.

V 6.0.1 – 20230103 www.prorealtime.com 16 / 64

Chapter I : Fundamenta ls

In the "Settings" tab you will see a new parameter which will allow you to modify the number of periods used
in the calculation of the moving average:

List of available types for variables:

Integer: integer between -2,000,000,000 and 2,000,000,000 (ex: 450)

Decimal: decimal number with a precision of 5 significant digits (ex: 1.03247)

Boolean: True (1) or False (0)

Moving Average Type: Allows you to set the value of the second parameter which defines the type
of moving average used in the calculation of the Average indicator (see above).

Of course, it is possible to create many variables giving you the possibility to manipulate multiple parameters
at the same time.

V 6.0.1 – 20230103 www.prorealtime.com 17 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Chapter II: Math Functions and ProBuilder instructions

Control Structures

Conditional IF instruction

The IF instruction is used to make a choice of conditional actions, ex: to make a result dependent on the
verification of one or more defined conditions.

The structure is made up of the instructions IF, THEN, ELSE, ELSIF, ENDIF, which are used depending on
the complexity of the conditions you defined.

One condition, one result (IF THEN ENDIF)

We can look for a condition and define an action if that condition is true. On the other hand, if the condition is
not valid, then nothing will happen (By default, Result = 0).

In this example, if current price is greater than the 20-period moving average, then we display: Result = 1
and display this on the chart.
Result = 0

IF Close > Average[20](Close) THEN

 Result = 1

ENDIF

RETURN Result

Result is equal to 0.
IF closing price > 20-period moving average
THEN Result = 1, otherwise Result is unchanged
END OF CONDITION

RETURN must always be followed with the storage variable containing the result in order to

display the result on the chart (in the last example we use the variable "Result").

One condition, two results (IF THEN ELSE ENDIF)

We can also define a different result if the condition is not true. Let us go back to the previous example: if the
price is greater than the moving average on 20 periods, then display 1, else, displays -1.
IF Close > Average[20](Close) THEN

 Result = 1

ELSE

 Result = -1

ENDIF

RETURN Result

NB: We have created a binary indicator. For more information, see the section on binary and ternary
indicators later in this manual.

Sequential IF conditions

You can create sub-conditions after the validation of the main condition, meaning conditions which must be
validated one after another. For that, you need to build a sequence of IF structures, one included in the other.
You should be careful to insert in the code as many ENDIF as IF. Example:

Double conditions on moving averages:
IF (Average[12](Close) - Average[20](Close) > 0) THEN

 IF ExponentialAverage[12](Close) - ExponentialAverage[20](Close) > 0 THEN

 Result = 1

 ELSE

 Result = -1

 ENDIF

ENDIF

RETURN Result

V 6.0.1 – 20230103 www.prorealtime.com 18 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Multiple conditions (IF THEN ELSE ELSIF ENDIF)

You can define a specific result for a specific condition. The indicator reports many states: if Condition 1 is
valid then do Action1; else, if Condition 2 is valid, then do Action 2 …if none of the previously mentioned
conditions are valid then do Action n.

This structure uses the following instructions: IF, THEN, ELSIF, THEN.... ELSE, ENDIF.

The syntax is:
IF (Condition1) THEN

 (Action1)

ELSIF (Condition2) THEN

 (Action2)

ELSIF (Condition3) THEN

 (Action3)

...

...

...

ELSE

 (Action n)

ENDIF

You can also replace ELSIF with ELSE IF but your program will take longer to write. Of course, you will have
to end the loop with as many instance of ENDIF as IF. If you want to make multiple conditions in your
program, we advise you to use ELSIF rather than ELSE IF for this reason.

Example: detection of bearish and bullish engulfing lines using the Elsif instruction

This indicator displays 1 if a bullish engulfing line is detected, -1 if a bearish engulfing line is detected, and 0
if neither of them is detected.

// Detection of a bullish engulfing line

Condition1 = Close[1] < Open[1]

Condition2 = Open < Close[1]

Condition3 = Close > Open[1]

Condition4 = Open < Close

// Detection of a bearish engulfing line

Condition5 = Close[1] > Open[1]

Condition6 = Close < Open

Condition7 = Open > Close[1]

Condition8 = Close < Open[1]

IF Condition1 AND Condition2 AND Condition3 AND Condition4 THEN

 a = 1

ELSIF Condition5 AND Condition6 AND Condition7 AND Condition8 THEN

 a = -1

ELSE

 a = 0

ENDIF

RETURN a

V 6.0.1 – 20230103 www.prorealtime.com 19 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Example: Resistance Demark pivot
IF DClose(1) > DOpen(1) THEN

 Phigh = DHigh(1) + (DClose(1) - DLow(1)) / 2

 Plow = (DClose(1) + DLow(1)) / 2

ELSIF DClose(1) < DOpen(1) THEN

 Phigh = (DHigh(1) + DClose(1)) / 2

 Plow = DLow(1) - (DHigh(1) - DClose(1)) / 2

ELSE

 Phigh = DClose(1) + (DHigh(1) - DLow(1)) / 2

 Plow = DClose(1) - (DHigh(1) - DLow(1)) / 2

ENDIF

RETURN Phigh , Plow

Example: BarIndex

In the chapter I of our manual, we presented BarIndex as a counter of bars loaded. BarIndex is often used
with IF. For example, if we want to know if the number of bars in your chart exceeds 23 bars, then we will
write:
IF BarIndex <= 23 THEN

 a = 0

ELSIF BarIndex > 23 THEN

 a = 1

ENDIF

RETURN a

V 6.0.1 – 20230103 www.prorealtime.com 20 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Iterative FOR Loop

FOR is used when we want to exploit a finite series of elements. This series must be made up of whole
numbers (ex: 1, 2, 3, ..., 6, 7 or 7, 6, ..., 3, 2, 1) and ordered.

Its structure is formed of FOR, TO, DOWNTO, DO, NEXT. TO and DOWNTO are used depending on the
order of appearance in the series of the elements (ascending order or descending order). We also highlight
the fact that what is between FOR and DO are the extremities of the interval to scan.

Ascending loop (FOR, TO, DO, NEXT)

FOR Variable = BeginningValueOfTheSeries TO EndingValueOfTheSeries DO

 (Action)

NEXT

Example: Smoothing of a 12-period moving average

Let’s create a storage variable (Result) which will sum the 11, 12 and 13-period moving averages.

Result = 0

FOR Variable = 11 TO 13 DO

 Result = Result + Average[Variable](Close)

NEXT

// Let’s create a storage variable (AverageResult) which will divide Result by 3 and
display average result. Average result is a smoothing of the 12-period moving average.

AverageResult = Result / 3

RETURN AverageResult

Let's see what is happening step by step:

Mathematically, we want to calculate the average the arithmetic moving averages of periods 11, 12 and 13.

Variable will thus take successively the values 11, 12 then 13

Result = 0

Variable = 11

Result receives the value of the previous Result + MA11 i.e.: (0) + MA11 = (0 + MA11)

The NEXT instruction takes us to the next value of the counter

Variable = 12

Result receives the value of the previous Result + MA12 or : (0 + MA11) + MA12 = (0 + MA11 + MA12)

The NEXT instruction takes us to to the next value of the counter

Variable = 13

Result receives the value of the previous Result + MA13 or : (0 + MA11 + MA12) + MA13 = (0 + MA11 +
MA12 + MA13)

The value 13 is the last value of the counter.

NEXT closes the FOR loop because there is no more next value.

Result is displayed

V 6.0.1 – 20230103 www.prorealtime.com 21 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

This code simply means that Variable will initially take the value of the beginning of the series, then Variable
will take the next value (the previous one + 1) and so on until Variable exceeds or is equal to the value of the
end of the series. Then the loop ends.

Example: Average of the highest value over the last 5 bars

SUMhigh = 0

IF BarIndex < 5 THEN

 MAhigh = Undefined

ELSE

 FOR i = 0 TO 4 DO

 SUMhigh = High[i]+SUMhigh

 NEXT

ENDIF

MAhigh = SUMhigh / 5

RETURN MAhigh

If there are not yet 5 periods displayed

Then we attribute to MAhigh value "Undefined" (not displayed)

ELSE

FOR values of i between 0 to 4

We sum the 5 last "High" values

We calculate the average for the last 5 periods and

store the result in MAhigh

We display MAhigh

Descending loop (FOR, DOWNTO, DO, NEXT)

The descending loop uses the following instructions: FOR, DOWNTO, DO, NEXT.

Its syntax is:

FOR Variable = EndingValueOfTheSeries DOWNTO BeginningValueOfTheSeries DO

 (Action)

NEXT

Let us go back to the previous example (the 5-period moving average of "High"):

Note that we have just reversed the limits of the scanned interval.

SUMhigh = 0

IF BarIndex < 5 THEN

 MAhigh = Undefined

ELSE

 FOR i = 4 DOWNTO 0 DO

 SUMhigh = High[i] + SUMhigh

 NEXT

ENDIF

MAhigh = SUMhigh / 5

RETURN Mahigh

V 6.0.1 – 20230103 www.prorealtime.com 22 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Conditional WHILE Loop

WHILE is used to keep doing actions while a condition remains true. You will see that this instruction is very
similar to the simple conditional instruction IF/THEN/ENDIF.

This structure uses the following instructions: WHILE, (DO optional), WEND (end WHILE), its syntax is:
WHILE (Condition) DO

 (Action 1)

 …

 (Action n)

WEND

This code lets you show the number of bars separating the current candlestick from a previous higher
candlestick within the limit of 30 periods.
i = 1

WHILE high > high [i] and i < 30 DO

 i = i + 1

WEND

RETURN i

Example: indicator calculating the number of consecutive increases
Increase = (Close > Close[1])

Count = 0

WHILE Increase[Count] DO

 Count = Count + 1

WEND

RETURN Count

General comment on the conditional instruction WHILE:

Similar to IF, the program will automatically assign the value 0 when the validation condition is unknown.

For example:
Count = 0

WHILE i <> 11 DO

 i = i + 1

 Count = Count + 1

WEND

RETURN Count

In the code above, the variable i is not defined, it will automatically take the value 0 during the first loop and
starting from the first candlestick.

The loop will use its resources to define the variable i and give it the value 0 by default. Count will be
processed and the return value 0 because its value is re-initialized at the beginning of each candlestick and i
will be greater than 11 at the end of the first candlestick, thus preventing entering the loop for the next
candlestick. By defining i from the beginning, we will have very different results:
i = 0

Count = 0

WHILE i <> 11 DO

 i = i + 1

 Count = Count + 1

WEND

RETURN Count

In this code, i is initialized to 0 at the beginning of each candlestick, so we pass each time in the loop and we
have 11 and 11 as return values for i and count.

V 6.0.1 – 20230103 www.prorealtime.com 23 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

BREAK

The BREAK instruction allows you to make a forced exit out of a WHILE loop or a FOR loop. Combinations
are possible with the IF command, inside a WHILE loop or a FOR loop.

With WHILE

When we want to exit a conditional WHILE loop, we use BREAK in the following way:
WHILE (Condition) DO

 (Action)

 IF (ConditionBreak)

 BREAK

 ENDIF

WEND

The use of BREAK in a WHILE loop is only interesting if we want to test an additional condition for which the
value can not be known while in the WHILE loop. For example, lets look at a stochastic which is only
calculated in a bullish trend:
line = 0

Increase = (Close - Close[1]) > 0

i = 0

WHILE Increase[i] DO

i = i + 1

// Si high - low, we exit the loop to avoid a division by zero.

IF (high-low) = 0 then

 BREAK

 ENDIF

osc = (close – low) / (high – low)

line = AVERAGE [i] (osc)

WEND

RETURN line

With FOR

When we try to get out of an iterative FOR loop, without reaching the last (or first) value of the series, we use
BREAK.
FOR Variable = SeriesStartValue TO SeriesEndValue DO

 (Action)

 BREAK

NEXT

Let’s take for example an indicator cumulating increases of the volume of the last 19 periods. This indicator
will be equal to 0 if the volume decreases.
Count = 0

FOR i = 0 TO 19 DO

 IF (Volume[i] > Volume[i + 1]) THEN

 Count = Count + 1

 ELSE

 BREAK

 ENDIF

NEXT

RETURN Count

In this code, if BREAK weren’t used, the loop would have continued until 19 (last element of the series) even
if the condition count is not valid.

With BREAK, on the other hand, as soon as the condition is no longer validated, it returns the result.

V 6.0.1 – 20230103 www.prorealtime.com 24 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

CONTINUE

The CONTINUE instruction is used to finish the current iteration of a WHILE or FOR loop. This command is
often used with BREAK, either to leave the loop (BREAK) or to stay in the loop (CONTINUE).

With WHILE

Let’s create a program counting the number of candlesticks whose close and open are greater than those of
the candlestick preceding them. If the condition is not valid, then the counter will be reset to 0.

Increase = Close > Close[1]

condition = Open > Open[1]

Count = 0

WHILE condition[Count] DO

 IF Increase[Count] THEN

 Count = Count + 1

 CONTINUE

 ENDIF

 BREAK

WEND

RETURN Count

When using CONTINUE, if the IF condition is not valid, then the WHILE loop is not ended. This allows us to
count the number of candlesticks detected with this condition verified. Without the CONTINUE instruction,
the program would leave the loop, whether the IF condition is verified or not.. Then, we would not be able to
continue counting the number of candlesticks detected and the result would be binary (1, 0).

With FOR

Let’s create a program counting the number of candlesticks whose close and open are greater than those of
the candlestick preceding them. If the condition is not valid, then the counter will be reset to 0.

Increase = Close > Close[1]

Count = 0

FOR i = 1 TO BarIndex DO

 IF Increase[Count] THEN

 Count = Count + 1

 CONTINUE

 ENDIF

BREAK

NEXT

RETURN Count

FOR gives you the possibility to test the condition over all the data loaded. When used with CONTINUE, if
the IF condition is validated, then we do not leave the FOR loop and resume it with the next value of i. This is
how we count the number of patterns detected by this condition.

Without CONTINUE, the program would leave the loop, even if the IF condition is validated. Then, we would
not be able to count the number of patterns detected and the result would be binary (1, 0).

It is important that you make sure that you always have a valid exit condition for FOR and
WHILE loops to ensure that your code works properly.

V 6.0.1 – 20230103 www.prorealtime.com 25 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

ONCE

The ONCE instruction is used to initialize a variable at a certain value "only once".

Knowing that for the whole program, the language will read the code for each bar displayed on the chart
before returning the result, you must then keep in mind that ONCE:

Is processed only one time by the program including the second reading.

During the second reading of the program, it will stock the values calculated in the previous reading.

To fully understand how this command works, you need to perceive how the language processes the
code, hence the usefulness of the next example.

These are two programs returning respectively 0 and 15 and which only difference is the ONCE command
added:

Program 1 Program 2
1

2

3

4

5

6

7

Count = 0

i = 0

IF i <= 5 THEN

 Count = Count + i

 i = i + 1

ENDIF

RETURN Count

1

2

3

4

5

6

7

ONCE Count = 0

ONCE i = 0

IF i <= 5 THEN

 Count = Count + i

 i = i + 1

ENDIF

RETURN Count

Let’s see how the language read the code.

Program 1:

The language will read L1 (Count = 0; i = 0), then L2, L3, L4, L5 and L6 (Count = 0; i = 1), then return to L1
and reread everything exactly the same way. The result displayed is 0 (zero), as after the first reading.

Program 2:

For the first bar, the language will read L1 (Count = 0; i = 0), then L2, L3, L4, L5, L6 (Count = 0; i = 1). When
it arrives at the line "RETURN", it restarts the loop to calculate the value of the next bar starting from L3 (the
lines with ONCE are processed only one time), L4, L5, L6 (Count = 1; i = 2), then go back again (Count =
3; i = 3) and so forth to (Count = 15; i = 6). Arrived at this result, the IF loop is not processed anymore
because the condition is not valid anymore; the only line left to read is L7, hence the result is 15 for the
remaining bars loaded.

V 6.0.1 – 20230103 www.prorealtime.com 26 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Mathematical Functions

Common unary and binary Functions

Let’s focus now on the Mathematical Functions. You will find in ProBuilder the main functions known in
mathematics. Please note that a and b are examples and can be numbers or any other variable in your
program.

MIN(a, b): calculate the minimum of a and b

MAX(a, b): calculate the maximum of a and b

ROUND(a, n): round a to the nearest whole number, with a precision of n digits after the decimal point

ABS(a): calculate the absolute value of a

SGN(a): shows the sign of a (1 if positive, -1 if negative)

SQUARE(a): calculate a squared

SQRT(a): calculate the square root of a

LOG(a): calculate the Neperian logarithm of a

POW(a,b) : calculate a raised to the power of b

EXP(a): calculate the exponent of a

COS(a) / SIN(a) / TAN(a): calculate the cosine/sine/tangent of a (in degrees)

ACOS(a) / ASIN(a) / ATAN(a): calculates the arc-cosine/arc-sine/arc-tangent of a (in degrees)

FLOOR(a, n) : returns the largest integer less than a with a precision of n

CEIL(a, n) : returns the smallest integer greater than a with a precision of n

RANDOM(a,b) : generates a random integer between a and b (included)

Let’s code the example of the normal distribution in mathematics. It’s interesting because it use the square
function, the square root function and the exponential function:

// Normal Law applied to x = 10, StandardDeviation = 6 and MathExpectation = 8

// Let’s define the following variables in the variable option:

StandardDeviation = 6

MathExpectation = 8

x = 10

Indicator = EXP((1 / 2) * (SQUARE(x – MathExpectation) / StandardDeviation)) /
(StandardDeviation * SQRT(2 / 3.14))

RETURN Indicator

Common mathematical operators

a < b: a is strictly less than b

a <= b or a =< b: a is less than or equal to b

a > b: a is strictly greater than b

a >= b or a => b: a is greater than or equal to b

a = b: a is equal to b (or b is attributed to a)

a <> b: a is different from b

Charting comparison functions

a CROSSES OVER b: the a curve crosses over the b curve

a CROSSES UNDER b: the a curve crosses under the b curve

V 6.0.1 – 20230103 www.prorealtime.com 27 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Summation functions

CUMSUM: Calculates the sum of a price or indicator over all bars loaded on the chart

The syntax of cumsum is:

CUMSUM (price or indicator)

Ex: CUMSUM(Close) calculates the sum of the close of all the bars loaded on the chart.

SUMMATION: Calculates the sum of a price or indicator over the last n bars

The sum is calculated starting from the most recent value (from right to left)

The syntax of SUMMATION is:

SUMMATION[number of bars]((price or indicator)

Ex: SUMMATION[20](Open) calculates the sum of the open of the last 20 bars.

Statistical functions

The syntax of all these functions is the same as the syntax for the Summation function, that is:

LOWEST[number of bars](price or indicator)

LOWEST: displays the lowest value of the price or indicator written between brackets, over the number
of periods defined

HIGHEST: displays the highest value of the price or indicator written between brackets, over the
number of periods defined

STD: displays the standard deviation of a price or indicator, over the number of periods defined

STE: displays the standard error of a price or indicator, over the number of periods defined

Logical operators

As any programming language, it is necessary to have at our disposal some Logical Operators to create
relevant indicators. These are the 4 Logical Operators of ProBuilder:

NOT(a): logical NO

a OR b: logical OR

a AND b: logical AND

a XOR b: exclusive OR (a OR b but not a AND b)

Calculation of the trend indicator: On Balance Volume (OBV):
IF NOT((Close > Close[1]) OR (Close = Close[1])) THEN

 MyOBV = MyOBV - Volume

ELSE

 MyOBV = MyOBV + Volume

ENDIF

RETURN MyOBV

V 6.0.1 – 20230103 www.prorealtime.com 28 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

ProBuilder instructions

RETURN: displays the result of your indicator

CALL: calls another ProBuilder indicator to use in your current program

AS: names the result displayed

COLOURED: colors the displayed curve in with the color of your choice

RETURN

We have already seen in chapter I how important the RETURN instruction was. It has some specific
properties we need to know to avoid programming errors.

The main points to keep in mind when using RETURN in order to write a program correctly are that Return is
used:

One and only one time in each ProBuilder program

Always at the last line of code

Optionally with other functions such as AS and COLOURED and STYLE

To display many results; we write RETURN followed with what we want to display and separated with a
comma (example: RETURN a,b)

Comments

// or /**/ allows you to write comments inside the code. They are mainly useful to remember how a function
you coded works. These remarks will be read but of course not processed by the program. Let’s illustrate the
concept with the following example:
// This program returns the simple moving average over 20 periods applied to the closing
price

RETURN Average[20](Close)

Don‘t use special characters (examples: é,ù,ç,ê…) in ProBuilder code. Special characters may

be used only within comments.

CustomClose

CustomClose is a variable allowing you to display the Close, Open, High, Low constants and many others,
which can be customized in the Settings window of the indicator.

Its syntax is the same as the one of the constants adapted to the timeframe of the chart:
CustomClose[n]

Example:
RETURN CustomClose[2]

By clicking on the wrench in the upper left corner of the chart, you will see that it is possible to customize the
prices used in the calculation.

CALCULATEONLASTBARS
CALCULATEONLASTBARS: This parameter allows you to increase the speed at which an indicator will be
calculated by defining the number of bars that can be used to calculate the indicator (less bars used in the
calculation = faster calculation speed).

Example: DEFPARAM CALCULATEONLASTBARS = 200

Warning: the use of the DEFPARAM instruction must be done at the beginning of the code.

V 6.0.1 – 20230103 www.prorealtime.com 29 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

CALL

CALL allows you to use a personal indicator you have coded before in the platform.

The quickest method is to click “Insert Function” then select the "User Indicators" category and then select
the name of the indicator you want to use and click "Add".

For example, imagine you have coded the Histogram MACD and named it HistoMACD.

Select your indicator and click on "Add". You will see in the programming zone:

myHistoMACD = CALL "HistoMACD"

The software gave the name "myHistoMACD" to the indicator "HistoMACD".

This means that for the rest of your program, if you want to use the HistoMACD indicator, you will have to call
it "myHistoMACD".

An example when several variables are returned by your CALL:
myExponentialMovingAverage, mySimpleMovingAverage = CALL "Averages"

AS

The keyword AS allows you to name the different results displayed. This instruction is used with RETURN
and its syntax is:
RETURN Result1 AS "Curve Name1", Result2 AS "Curve Name2", …

This keyword makes it easier to identify the different curves on your chart.

Example:
a = ExponentialAverage[200](Close)

b = WeightedAverage[200](Close)

c = Average[200](Close)

RETURN a AS "Exponential Average", b AS "Weighted Average", c AS "Arithmetic Average"

COLOURED

COLOURED is used after the RETURN command to color the value displayed with the color of your choice,
defined with the RGB norm (Red, Green, Blue) or by using predefined colors.

The 140 predefined colors can be found in the following documentation:

W3 School : HTML Color Names

Here are the main colors of the RGB standard as well as their predefined HTML name:

COLOR
RGB VALUE (between 0 and 255)

(RED, GREEN, BLUE)
HTML Color name

(0, 0, 0) Black

(255, 255, 255) White

(255, 0, 0) Red

(0, 255, 0) Green

(0, 0, 255) Blue

(255, 255, 0) Yellow

(0, 255, 255) Cyan

(255, 0, 255) Magenta

V 6.0.1 – 20230103 www.prorealtime.com 30 / 64

https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/colors/colors_names.asp

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

The syntax for using the Coloured command is as follows:
RETURN Indicator COLOURED(RedValue, GreenValue, BlueValue)

Or alternatively:
RETURN Indicator COLOURED("cyan")

Optionally, you can control the opacity of your curve with the alpha parameter (between 0 and 255):
RETURN Indicator COLOURED(Red Value, Green Value, BlueValue, AlphaValue)

The AS command can be associated with the COLOURED(. , . , .) command:
RETURN Indicator COLOURED(RedValue, GreenValue, BlueValue) AS "Name of the curve"

Let’s go back to the previous example and insert COLOURED in the "RETURN" line.
a = ExponentialAverage[200](Close)

b = WeightedAverage[200](Close)

c = Average[200](Close)

RETURN a COLOURED("red") AS "Exponential Moving Average", b COLOURED("green") AS
"Weighted Moving Average", c COLOURED("blue") AS "Simple Moving Average"

This picture shows you the color customization of the result.

V 6.0.1 – 20230103 www.prorealtime.com 31 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Drawing instructions

These commands allow you to draw objects on the charts but also to customize your candles, the bars of
your charts as well as the colors of all these elements.

For each instruction below, the color can be defined in a similar way to the color of your curve (COLOURED
instruction above) with either a predefined color (HTML Color Name) in quotes, or an RGB value (R,G,B) on
which you can apply an alpha opacity parameter: (HTML Color Name,alpha) or (R,G,B,alpha)

BACKGROUNDCOLOR(R, G, B, a) : Lets you color the background of the chart or specific bars (such as
odd/even days). The colored zone starts halfway between the previous bar and the next bar

Example: BACKGROUNDCOLOR (0, 127, 255, 25)

Its possible to use a variable for the colors if you want the background color to change based on your
conditions.

Example: BACKGROUNDCOLOR (0, color, 255, 25)

COLORBETWEEN: Allows you to fill the space between two values with a certain color.

Example : COLORBETWEEN (open, close, "white")

DRAWBARCHART : Draws a custom bar on the chart. Open, high, low and close can be constants or
variables.

Example: DRAWBARCHART (open, high, low, close) COLOURED (0, 255, 0)

DRAWCANDLE : Draws a custom candlestick on the chart. Open, high, low and close can be constants or
variables.

Example: DRAWCANDLE (open, high, low, close) COLOURED ("black")

V 6.0.1 – 20230103 www.prorealtime.com 32 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

For all the drawing instructions below, the x-axis is expressed by default as a bar number (BARINDEX) and
the y-axis corresponds to the vertical scale of the values in your graph. However, you can change this
behavior with the ANCHOR command described later.

DRAWARROW: Draws an arrow pointing right. You need to define a point for the arrow (x and y axis). You
can also choose a color.

Example: DRAWARROW (x1, y1) COLOURED (R, G, B, a)

DRAWARROWUP: Draws an arrow pointing up. You need to define a point for the arrow (x and y axis). You
can also choose a color.

Example: DRAWARROWUP (x1, y1) COLOURED (R, G, B, a)

This is useful to add visual buy signals.

DRAWARROWDOWN: Draws an arrow pointing down. You need to define a point for the arrow (x and y axis).
You can also choose a color.

Example: DRAWARROWDOWN (x1, y1) COLOURED (R, G, B, a)

This is useful to add visual sell or buy signals.

DRAWRECTANGLE: Draws a rectangle on the chart.

Example: DRAWRECTANGLE (x1, y1, x2, y2) COLOURED (R, G, B, a)

DRAWTRIANGLE: Draws a triangle on the chart.

Example : DRAWTRIANGLE (x1, y1, x2, y2, x3, y3) COLOURED (R, G, B, a)

DRAWELLIPSE: Draws an ellipse on the chart.

Example: DRAWELLIPSE (x1, y1, x2, y2) COLOURED (R, G, B, a)

V 6.0.1 – 20230103 www.prorealtime.com 33 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

DRAWPOINT: Draws a point on the chart.

Example : DRAWPOINT (x1, y1, pointSize) COLOURED (R, G, B, a)

DRAWLINE : Draws a line on the chart.

Example: DRAWLINE (x1, y1, x2, y2) COLOURED (R, G, B, a)

DRAWHLINE : Draws a horizontal line on the chart.

Example: DRAWHLINE (y1) COLOURED (R, G, B, a)

DRAWVLINE : Draws a vertical line on the chart.

Example: DRAWVLINE (x1) COLOURED (R, G, B, a)

DRAWSEGMENT : Draws a segment on the chart.

Example: DRAWSEGMENT (x1, y1, x2, y2) COLOURED (R, G, B, a)

Example: DRAWSEGMENT (barindex, close, barindex[5], close[5])

DRAWRAY : Draws a ray on the graph

Example : DRAWRAY (x1, y1, x2, y2)

DRAWTEXT: Adds a text field to the chart with text of your choice at a specified location. This text can be
configured using different style settings.

Example: DRAWTEXT ("your text", x1, y1, SERIF, BOLD, 10) COLOURED (R, G, B, a)

Example: DRAWTEXT (value, x1, y1, font, fontStyle, fontSize) COLOURED (R,G,B,a)

Example: DRAWTEXT (value, x1, y1) COLOURED ("green")

V 6.0.1 – 20230103 www.prorealtime.com 34 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Here are the different possible values for the font and font style parameters, the font size is between 1
and 30:

Font Font style

DIALOG STANDARD

MONOSPACED BOLD

SANSERIF BOLDITALIC

SERIF ITALIC

DRAWONLASTBARONLY : Parameter that lets you draw drawn objects on the last bar only. This parameter
should always be used with "CALCULATEONLASTBARS" to optimize calculations.

Example: DEFPARAM DRAWONLASTBARONLY = true

Additional parameters

For some of these design commands, various additional instructions can be applied in no particular order:

BORDERCOLOR
This instruction allows you to define the color of the border of a drawn object (excluding lines and arrows).

Example 1: DRAWRECTANGLE(barindex, close, barindex[5], close[5]) BORDERCOLOR(color)

Example 2: DRAWRECTANGLE(barindex, close, barindex[5], close[5]) BORDERCOLOR("red")

ANCHOR
This instruction allows you to define the anchor point of the object when you want to draw it from a starting
point other than the candlesticks.

DRAWTEXT(close, n, p) ANCHOR(referencePoint, horizontalShift, verticalShift)

It can take several values as parameters:

Parameter 1: the position of the anchor

Value Description

TOPLEFT Fixed at the top left of the chart

TOP Fixed at the top of the chart (middle)

TOPRIGHT Fixed at the top right of the chart

RIGHT Fixed to the right of the graph (middle)

BOTTOMRIGHT Fixed at the bottom right of the chart

BOTTOM Fixed at the bottom of the graph (middle)

BOTTOMLEFT Fixed at the bottom left of the chart

LEFT Fixed to the left of the graph (middle)

MIDDLE Fixed in the center of the graph

V 6.0.1 – 20230103 www.prorealtime.com 35 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Parameter 2: the type of value to set the positioning on the horizontal axis

INDEX: The values entered in the drawing of the object for the horizontal axis will refer to the
barindex of the candlesticks

XSHIFT: The values entered in the drawing of the object for the horizontal axis will refer to an offset
value in pixels (positive or negative with respect to an orthonormal reference frame)

Parameter 3: the type of value to set the positioning on the vertical axis

VALUE: The values entered in the drawing of the object for the vertical axis will refer to a price

YSHIFT: The values entered in the drawing of the object for the vertical axis will refer to an offset
value in pixels (positive or negative with respect to an orthonormal reference frame)

Examples:
DRAWTEXT(previousClose, -20, -50) ANCHOR(TOPRIGHT, XSHIFT, YSHIFT)
Displays the previousClose variable value at the top right of the graph with an offset of -20 on the horizontal axis and -
50 on the vertical axis.

DRAWTEXT("Top", barindex-10, -20) ANCHOR(TOP, INDEX, YSHIFT)
Draws the text "Top" at the top of the chart with an offset of -20 on the vertical axis and positioned in the continuity of
the 10ème barindex before the last one.

STYLE
This instruction allows you to define a style for objects (except arrows) or for returned values.

DRAWRECTANGLE(x1, y1, x2, y2) STYLE(style, lineWidth)

There are different styles:

DOTTEDLINE: this style transforms the line into a dotted line, there are 5 different configurations that
represent 5 different dotted line lengths: DOTTEDLINE, DOTTEDLINE1, DOTTEDLINE2, DOTTEDLINE3,
DOTTEDLINE4

LINE: this style restores the default line style (full line)

HISTOGRAM: this style, only applicable in the RETURN instruction of an indicator, displays the returned
values as a histogram.

POINT: this style, only applicable in the RETURN instruction of an indicator, displays the returned values
as a point.

lineWidth which defines the thickness of the line, will take a value between 1 (the thinnest) and 5 (the
thickest).

V 6.0.1 – 20230103 www.prorealtime.com 36 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Note: for the drawing functions it is possible to specify a date rather than a candlestick index thanks to the
DateToBarIndex function which allows to transform a date to the nearest associated bar index.

The instruction is written in the following form:
DateToBarIndex(date)

Expected date formats:

YYYY / Example: 2022

YYYYMM / Example: 202208

YYYYMMDD / Example: 20220815

YYYYMMDDHH / Example: 2022081517

YYYYMMDDHHMM / Example: 202208151730

YYYYMMDDHHMMSS / Example: 20220815173020

V 6.0.1 – 20230103 www.prorealtime.com 37 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Multi-period instructions

ProBuilder allows you to work on different time periods in your Backtests, Indicators and Screeners, giving
you access to more complete data when designing your codes.

The instruction is structured as follows:

TIMEFRAME(X TimeUnit , Mode)
With the following parameters:

TimeUnit: The type of period chosen (see List of available time frames)

X: The value associated with the selected period

Mode: The selected calculation mode (optional)

Example: TIMEFRAME(1 Hour)

You can use multi-timeframe instructions only to call time units greater than your base time unit (time unit of
the chart).

The secondary time units called must also be a multiple of the base time unit .

Thus on a 10 minutes chart:

We can call the following time frames: 20 minutes, 1 hour, 1 day.

We can't call the 5 minutes or 17 minutes time frames.

To enter a higher time frame, you need to use the instruction:

TIMEFRAME(X TimeUnit)

To return to the base time frame of the chart, use the following command:

TIMEFRAME(DEFAULT)

You can also indicate the time frame of the base chart.

The platform editor colors the background of the code blocks in higher timeframes to help you visualize the
pieces of code calculated in each different time frame.

It is also possible to use two calculation modes in a larger time unit in order to have more flexibility in your

V 6.0.1 – 20230103 www.prorealtime.com 38 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

calculations:

TIMEFRAME(X TimeUnit , DEFAULT)

TIMEFRAME(X TimeUnit , UPDATEONCLOSE)

DEFAULT: this is the default mode of the timeframe (mode used when the second parameter is not
specified), the calculations in the higher time frames are performed at each new price received in the base
time unit of the chart.

UPDATEONCLOSE: the calculations contained in a time frame in this mode are performed at the closing of the
candlestick of the higher time frame.

Here is an example of code showing the difference between the two calculation modes:

// calculation of an average price between opening and closing in the two available modes.

TIMEFRAME(1 Hour)

MidPriceDefault=(open+close)/2

TIMEFRAME(1 Hour, UPDATEONCLOSE)

MidPriceUpdateOnClose=(open+close)/2

Return MidPriceDefault as "Average Price Default mode" COLOURED ("DarkSeaGreen")
,MidPriceUpdateOnClose as "Average Price UpdateOnClose mode" COLOURED
("DarkRed")

Here we notice that my MidPriceDefault (in green) is updated after every 5 minute candlestick, while
MidPriceUpdateOnClose (in red) is updated after every 1 hour candlestick.

V 6.0.1 – 20230103 www.prorealtime.com 39 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Note on the use of the TIMEFRAME instruction:

A variable calculated in one time frame cannot be overwritten by a calculation in another time frame, on
the other hand the variables can be used in all time frames contained in the same code.

There is a limit of 5 TIMEFRAME intraday instructions (smaller than daily) for automatic trading and
backtesting.

For the screener, only the DEFAULT mode is available, so it is not necessary to specify the mode.
Moreover, in order to guarantee the performance of calculations on many real time values, only a
predefined list of available time frames is authorized for this module.
For more information, please read the ProScreener Documentation.

List of available time frames

Periods Examples

Tick / Ticks TIMEFRAME(1 Tick)

sec / Second / Seconds TIMEFRAME(10 Seconds)

mn / Minute / Minutes TIMEFRAME(5 Minutes)

Hour / Hours TIMEFRAME(1 Hour)

Day / Days TIMEFRAME(5 Days)

Week / Weeks TIMEFRAME(1 Weeks)

Month / Months TIMEFRAME(2 Month)

Year / Years TIMEFRAME(1 Year)

V 6.0.1 – 20230103 www.prorealtime.com 40 / 64

https://www.prorealtime.com/en/pdf/proscreener_c1416313647c.pdf

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

Arrays (Data tables)

In order to be able to store several values on the same candlestick or to store values only when necessary,
we suggest you to use Arrays (data tables) instead of variables.

A code can contain as many arrays as necessary, which can contain up to one million values each.

An array is always prefixed with the $ symbol.

Syntax of a variable Syntax of an array

A $A

An array starts from index 0 to index 999 999

Index 0 1 2 3 4 5 6 ... 999 999

Value

 To insert a value in an array, simply use

$Array[Index] = value

For example if we want to insert the value of the calculation of the moving average of period 20 at index 0 of
array A, we will write :

$A[0] = Average[20](close)

To read the value of an index of the table, we will use, on the same principle:
$Array[Index]

For example if we want to create a condition that checks that the close is greater than the value of the first
index of the array A:

Condition = close > $A[0]

When inserting a value at an index n of an array, ProBuilder will initialize the values to zero for all the
undefined indices from 0 to n-1 in order to facilitate the use of the data contained in this array.

Specific functions

Several functions specific to arrays are available to facilitate their manipulation and use:

ArrayMax($Array): returns the highest value of the array that has been defined. The zeros filled

automatically by ProBuilder are not taken into account.

ArrayMin($Array): returns the smallest value of the array that has been defined. The zeros filled

automatically by ProBuilder are not taken into account.

ArraySort($Array, MODE): Sorts the array in ascending order (mode=ASCEND) or in descending

order (mode=DESCEND). The zeros filled automatically by ProBuilder will then be removed.

IsSet($Array[index]): returns 1 if the index of the table has been defined, 0 if it has not been defined.

The zeros filled automatically by ProBuilder are not considered as having been defined so the function will

return 0 on these indices.

V 6.0.1 – 20230103 www.prorealtime.com 41 / 64

Chapter I I : Math Funct ions and ProBui ld er inst ruct ions

LastSet($Array): returns the highest defined index of the array, if no index has been defined in the

array, the function will return -1.

UnSet($Array): Resets the array to 0 by completely deleting its content.

If you want to see use cases of these functions, we recommend this link from our partner ProRealCode
which details the use of arrays through different examples.

V 6.0.1 – 20230103 www.prorealtime.com 42 / 64

https://www.prorealcode.com/topic/array-variables-availability-in-prorealtime/

Chapter I I I : Pract ica l asp ects

Chapter III: Practical aspects

Create a binary or ternary indicator : why and how ?

A binary or ternary indicator is by definition an indicator that can only return two or three possible results
(usually 0, 1 or -1). Its main use in a stock market context is to make the verification of the condition that
constitutes the indicator immediately identifiable.

Uses of a binary or ternary indicator:

Enable the detection of the main Japanese candlestick patterns

Facilitate the reading of a chart graph when trying to verify several conditions at once

To be able to put classic alerts with 1 condition on an indicator that incorporates several you will
have more alerts available!

Detecting complex conditions also on historical data

Facilitate the creation or execution of a backtest

Binary or ternary indicators are constructed using the IF function. We advise you to reread the relative
section before continuing reading.

Let’s picture the creation of these indicators to detect price patterns:

Binary Indicator: hammer detection hammer
Hammer = Close>Open AND High = Close AND (Open-Low) >= 3*(Close-Open)

IF Hammer THEN

 Result = 1

ELSE

 Result = 0

ENDIF

RETURN Result AS "Hammer"

This simplified code will also give the same results:
Hammer = Close>Open AND High = Close AND (Open-Low) >= 3*(Close-Open)

RETURN Hammer AS "Hammer"

Ternary Indicator: Golden Cross and Death Cross detection
a = ExponentialAverage[10](Close)

b = ExponentialAverage[20](Close)

c = 0

// Golden Cross detection

IF a CROSSES OVER b THEN

 c = 1

ENDIF

// Death Cross detection

IF a CROSSES UNDER b THEN

 c = -1

ENDIF

RETURN c

V 6.0.1 – 20230103 www.prorealtime.com 43 / 64

Chapter I I I : Pract ica l asp ects

Note: we have displayed the exponential moving average over 10 and 20 periods both applied to the close in
order to highlight the results of the indicator.

You can find other candlestick pattern indicators in the "Exercises" chapter later in this manual.

Creating stop indicators to follow a position

It is possible to create STOP indicators, meaning potential places to exit the market defined by personalized
parameters.

With the backtesting module ProBacktest, which is the subject of another programming manual, you can also
define the stop levels of a backtest. However, programming a stop as an indicator is interesting because:

It allows to visualize the stop as a line which updates in real-time on the chart (ex: trailing stop)

It is possible to place real-time alerts to be immediately informed of the situation

It is not necessary to create long or short orders (contrary to ProBacktest)

Programming Stops is also a means to master the commands you saw in the previous chapters.

These are the 4 categories of stop we will focus on:

Static Take Profit STOP

Static STOP Loss

Inactivity STOP

Trailing STOP (trailing stop loss or trailing take profit)

The indicators presented in the following examples are possible codes to create stop indicators. You will
most probably personalize them using the instructions you learned in the previous chapters.

V 6.0.1 – 20230103 www.prorealtime.com 44 / 64

Chapter I I I : Pract ica l asp ects

Static Take Profit STOP
A Static Take-Profit designates a level that if price reaches it, we plan to close our position and exit with
gains. By definition, this STOP is a fixed level (horizontal line). The user of this kind of STOP will exit his
position and take his profit when this level is reached.

The indicator coded below indicates two levels and “StartingTime” is the moment you entered your position:

If you are a buyer, you will take into account the higher curve, representing a 10% profit (110% of the
price when you took your long position).

If you are a seller, you will take into account the lower curve, representing a10% profit (90% of the price
when you took your short position).

// We define as a variable : StartingTime = 100000

// Set this variable correctly to the time of your position entry

// Price= Price at the moment of taking the position (we have taken the example of a
position entry date defined at 10 am)

// If you are long, you will be looking at the top curve. If you are short, you will look
at the bottom curve.

// AmplitudeUp represents the rate of change of Price used to plot the Take Profit in a
long position (default 1.1)

// AmplitudeDown represents the rate of change of Price used to plot the Take Profit in a
short position (default: 0.9)

IF Time = StartingTime THEN

 StopLONG = AmplitudeUp * Price

 StopSHORT = AmplitudeDown * Price

ENDIF

RETURN StopLONG COLOURED(0, 0, 0) AS "TakeProfit LONG", StopSHORT COLOURED(0, 255, 0) AS
"TakeProfit SHORT"

Static STOP loss
A Static STOP Loss is the opposite of a Static Take-Profit STOP, meaning if price reaches it, we plan to
close our position and exit with losses. This STOP is very useful when you are losing money and try exit the
market to limit your losses to the minimum. Just like the Static Take-Profit, this STOP defines a fixed level,
but this time, the user will exit his position and cut his losses when this level is reached.

The indicator coded below indicates two levels and “StartingTime” is the moment you entered your position:

If you are a buyer, you will take into account the lower curve, representing a 10% loss (90% of the price
when you took your long position).

If you are a seller, you will take into account the higher curve, representing a 10% loss (110% of the
price when you took your short position).

The code of this indicator is:
// We define in the variables section:

// StartingTime = 100000 (this is an example for 10 am; set this to the time you entered
your position)

// Price= Price when you took your position

// You can look at StopLONG if looking at a long position and StopShort if you are
looking at a short position. You can also remove StopLONG or StopSHORT if you only work
with long positions or only work with short positions.

// AmplitudeUp represents the variation rate of Price used to draw the Stop Loss for
short positions (default: 0.9)

// AmplitudeDown represents the variation rate of Price used to draw the Stop Loss for
long positions (default: 1.1)

IF Time = StartingTime THEN

 StopLONG = AmplitudeUp * Price

 StopSHORT = AmplitudeDown * Price

ENDIF

RETURN StopLONG COLOURED(0, 0, 0) AS "StopLoss LONG", StopSHORT COLOURED(0, 255, 0) AS
"StopLoss SHORT"

V 6.0.1 – 20230103 www.prorealtime.com 45 / 64

Chapter I I I : Pract ica l asp ects

Inactivity STOP

An inactivity STOP closes the position when the gains have not obtained a certain objective (defined in % or
in points) over a certain period (defined in number of bars).

Remember to define the variables in the "Variables" section.

Example of Inactivity Stop on Intraday Charts:

This stop is to be used with these two indicators:

The first indicator is to be displayed juxtaposed on the price chart

The second indicator must be displayed in a separate chart

Indicator1

// We define in the variables section:

// MyVolatility = 0.01 represents variation rate between the each part of the range and
the close

IF IntradayBarIndex = 0 THEN

 ShortTarget = (1 - MyVolatility) * Close

 LongTarget = (1 + MyVolatility) * Close

ENDIF

RETURN ShortTarget AS "ShortTarget", LongTarget AS "LongTarget"

Indicator2

// We define in the variables section:

// We supposed that you take an "On Market Price" position

// MyVolatility = 0.01 represents variation rate between the each part of the range and
the close

// NumberOfBars=20: the close can fluctuate within the range defined during a maximum of
NumberOfBars before the position is cut (Result = 1)

Result = 0

Cpt = 0

IF IntradayBarIndex = 0 THEN

 ShortTarget = (1 - MyVolatility) * Close

 LongTarget = (1 + MyVolatility) * Close

ENDIF

FOR i = IntradayBarIndex DOWNTO 1 DO

 IF Close[i] >= ShortTarget AND Close[i] <= LongTarget THEN

 Cpt = Cpt + 1

 ELSE

 Cpt = 0

 ENDIF

 IF Cpt = NumberOfBars THEN

 Result = 1

 ENDIF

NEXT

RETURN Result

V 6.0.1 – 20230103 www.prorealtime.com 46 / 64

Chapter I I I : Pract ica l asp ects

Trailing Stop

A trailing STOP follows the evolution of the price dynamically and indicates when to close a position.

We suggest you two ways to code a trailing STOP, the first one corresponding to a Dynamic Trailing Stop
Loss, and the other one to a Dynamic Trailing Take Profit.

Trailing STOP LOSS (to be used in intraday trading)

// Define the following variables in the variable section:

// StartingTime = 090000 (this is an example for 9 am; set this to the time you entered
your position)

// We suppose that you open an "On Market Price" position

// Amplitude represents the variation rate of the "Cut" curve compared to the "Lowest"
curves (for example, we can take Amplitude = 0.95)

IF Time = StartingTime THEN

 IF lowest[5](Close) < 1.2 * Low THEN

 IF lowest[5](Close) >= Close THEN

 Cut = Amplitude * lowest[5](Close)

 ELSE

 Cut = Amplitude * lowest[20](Close)

 ENDIF

 ELSE

 Cut = Amplitude * lowest[20](Close)

 ENDIF

ENDIF

RETURN Cut AS "Trailing Stop Loss"

Trailing TAKE Profit (to be used in intraday trading)

// Define the following variables in the variable section:

// StartingTime = 090000 (this is an example for 9 am; set this to the time you entered
your position)

// You take an “On Market Price” position

// Amplitude represents the variation rate of the "Cut" curve compared to the "Lowest"
curve (for example, we can take Amplitude = 1.015)

IF Time = StartingTime THEN

 StartingPrice = Close

ENDIF

Price = StartingPrice - AverageTrueRange[10]

TrailingStop = Amplitude * highest[15](Price)

RETURN TrailingStop COLOURED (255, 0, 0) AS "Trailing take profit"

V 6.0.1 – 20230103 www.prorealtime.com 47 / 64

Chapter IV: Exercises

Chapter IV: Exercises

Candlesticks patterns

GAP UP or DOWN

The color of the candlesticks is not important.

We define as a customizable variable amplitude = 0.001

A gap is defined by these two conditions:

(the current low is strictly greater than the high of the previous bar) or (the current high is strictly lesser
than the low of the previous bar)

the absolute value of ((the current low – the high of the previous bar)/the high of the previous bar) is
strictly greater than amplitude) or ((the current high – the low of the previous bar)/the low of the previous
bar) is strictly greater than amplitude)

// Initialization of Amplitude

Amplitude = 0.001

// Initialization of detector

Detector = 0

// Gap Up

// 1st condition of the existence of a gap

IF Low > High[1] THEN

 // 2nd condition of the existence of a gap

 IF ABS((Low - High[1]) / High[1]) > Amplitude THEN

 // Behavior of the detector

 Detector = 1

 ENDIF

ENDIF

// Gap Down

// 1st condition of the existence of a gap

IF High < Low[1] THEN

 // 2nd condition of the existence of a gap

 IF ABS((High - Low[1]) / Low[1]) > Amplitude THEN

 // Behavior of the detector

 Detector = -1

 ENDIF

ENDIF

// Result display

RETURN Detector AS "Gap detection"

V 6.0.1 – 20230103 www.prorealtime.com 48 / 64

Chapter IV: Exercises

Doji (flexible version)

In this code, we define a doji to be a candlestick with a range (High – Close) greater
than 5 times the absolute value of (Open – Close).

Doji = Range > ABS(Open - Close) * 5

RETURN Doji AS "Doji"

Doji (strict version)

We define the doji with a Close equal to its Open.

Doji = (Open = Close)

RETURN Doji AS "Doji"

Indicators

BODY MOMENTUM

Body Momentum is mathematically defined by: BodyMomentum = 100 * BodyUp / (BodyUp + BodyDown)

BodyUp is a counter of bars for which close is greater than open during a certain number of periods (in this
example : 14).

BodyDown is a counter of bars for which open is greater than close during a certain number of periods (in
this example : 14).
Periods = 14

b = Close - Open

IF BarIndex > Periods THEN

 Bup = 0

 Bdn = 0

 FOR i = 1 TO Periods

 IF b[i] > 0 THEN

 Bup = Bup + 1

 ELSIF b[i] < 0 THEN

 Bdn = Bdn + 1

 ENDIF

 NEXT

 BM = (Bup / (Bup + Bdn)) * 100

ELSE

 BM = Undefined

ENDIF

RETURN BM AS "Body Momentum"

V 6.0.1 – 20230103 www.prorealtime.com 49 / 64

Chapter IV: Exercises

ELLIOT WAVE OSCILLATOR

The Elliot wave oscillator shows the difference between two moving averages.

Parameters:

a: short MA periods (5 by default)

b: long MA periods (35 by default)

This oscillator permits to distinguish between wave 3 and wave 5 using Elliot wave theory.

The short MA shows short-term price action whereas the long MA shows the longer term trend.

When the prices form wave 3, the prices climb strongly which shows a high value of the Elliot Wave
Oscillator.

In wave 5, the prices climb more slowly, and the oscillator will show a lower value.

RETURN Average[5](MedianPrice) - Average[35](MedianPrice) AS "Elliot Wave Oscillator"

Williams %R

This is an indicator very similar to the Stochastic oscillator. To draw it, we define 2 curves:

1) The curve of the highest of high over 14 periods

2) The curve of the lowest of low over 14 periods

The %R curve is defined by this formula: (Close – Lowest Low) / (Highest High – Lowest Low) * 100

HighestH = highest[14](High)

LowestL = lowest[14](Low)

MyWilliams = (Close - LowestL) / (HighestH - LowestL) * 100

RETURN MyWilliams AS "Williams %R"

Bollinger Bands

The middle band is a simple 20-period moving average applied to close.

The upper band is the middle band plus 2 times the standard deviation over 20 periods applied to close.

The lower band is the middle band minus 2 times the standard deviation over 20 periods applied to close.

a = Average[20](Close)

// We define the standard deviation.

StdDeviation = STD[20](Close)

Bsup = a + 2 * StdDeviation

Binf = a - 2 * StdDeviation

RETURN a AS "Average", Bsup AS "Bollinger Up", Binf AS "Bollinger Down"

You can visit our ProRealTime community on the ProRealCode forum to find online documentation and
many more examples.

V 6.0.1 – 20230103 www.prorealtime.com 50 / 64

https://www.prorealcode.com/prorealtime-documentation/
https://www.prorealcode.com/forums/

Glossary

Glossary

A

CODE SYNTAX FUNCTION

ABS ABS(a) Mathematical function "Absolute Value" of a

AccumDistr AccumDistr(price) Classical Accumulation/Distribution indicator

ACOS ACOS(a) Mathematical function "Arc cosine

AdaptiveAverage AdaptiveAverage[x,y,z](price) Adaptive Average Indicator

ADX ADX[N] Indicator Average Directional Index or "ADX" of
n periods

ADXR ADXR[N] Indicator Average Directional Index Rate or
"ADXR" of n periods

AND a AND b Logical AND Operator

ArraySort ArraySort($MyArray,
ASCEND)

Sort the table in ascending (ASCEND) or
descending (DESCEND) order

AroonDown AroonDown[P] Aroon Down indicator

AroonUp AroonUp[P] Aroon Up indicator

ATAN ATAN(a) Mathematical function "Arctangent"

ANCHOR ANCHOR(direction, index,
yshift)

Anchor function for drawings

AS RETURN Result AS
"ResultName"

Instruction used to name a line or indicator
displayed on chart. Used with "RETURN"

ASIN ASIN(a) Mathematical function "Arc sine".

Average Average[N](price) Simple Moving Average of n periods

AverageTrueRange AverageTrueRange[N](price) "Average True Range" - True Range smoothed
with the Wilder method

V 6.0.1 – 20230103 www.prorealtime.com 51 / 64

Glossary

B

CODE SYNTAX FUNCTION

BACKGROUNDCOLOR BACKGROUNDCOLOR(R,G,
B,a)

Sets the background color of the chart or a
specific bar

BarIndex BarIndex Number of bars since the beginning of data
loaded (in a chart in the case of a ProBuilder
indicator or for a trading system in the case of
ProBacktest or ProOrder)

BarsSince BarsSince(condition) Returns the number of candlesticks since the
last condition was met

Bold DRAWTEXT("text",barindex,cl
ose,Serif,Bold, 10)

Bold style to be applied to the text

BoldItalic DRAWTEXT("text",barindex,cl
ose,Serif,BoldItalic, 10)

Bold italic style to be applied to the text

BollingerBandWidth BollingerBandWidth[N](price) Bollinger Bandwidth indicator

BollingerDown BollingerDown[N](price) Lower Bollinger band

BollingerUp BollingerUp[N](price) Upper Bollinger band

BOTTOM ANCHOR(BOTTOM,INDEX,Y
SHIFT)

Anchor at the bottom of the chart

BOTTOMLEFT ANCHOR(BOTTOMLEFT,IND
EX,YSHIFT)

Anchor at the bottom left of the chart

BOTTOMRIGHT ANCHOR(BOTTOMRIGHT,IN
DEX,YSHIFT)

Anchor at the bottom right of the chart

BORDERCOLOR BORDERCOLOR("red") Adds a colored border to the associated object.

BREAK (FOR...DO...BREAK...NEXT)
or
(WHILE...DO...BREAK...WEND)

Instruction forcing the exit of FOR loop or
WHILE loop

V 6.0.1 – 20230103 www.prorealtime.com 52 / 64

Glossary

C

CODE SYNTAX FUNCTION

CALCULATEONLASTBARS DEFPARAM
CalculateOnLastBars = 200

Lets you increase the speed at which indicators
are calculated by defining the number of bars to
display the results, starting with the most recent
bar.

CALL myResult=CALL myFunction Calls a user indicator to be used in the program
you are coding

CCI CCI[N](price) or CCI[N] Commodity Channel Index indicator

CEIL CEIL(N, m) Returns the smallest number greater than N
applied to the decimal m

ChaikinOsc ChaikinOsc[Ch1, Ch2](price) Chaikin oscillator

Chandle Chandle[N](price) Chande Momentum Oscillator

ChandeKrollStopUp ChandeKrollStopUp[Pp, Qq,
X]

Chande and Kroll Protection Stop on long
positions

ChandeKrollStopDown ChandeKrollStopDown[Pp,
Qq, X]

Chande and Kroll Protection Stop on short
positions

Close Close[N] Closing price of the current bar or of the nth last
bar

COLOURED RETURN x
COLOURED(R,G,B)

Colors a curve with the color you defined using
the RGB convention

COLORBETWEEN COLORBETWEEN(a, b, color) Color the space between two values.

COS COS(a) Cosine Function

CROSSES OVER a CROSSES OVER b Boolean Operator checking whether a curve has
crossed over another one

CROSSES UNDER a CROSSES UNDER b Boolean Operator checking whether a curve has
crossed under another one

Cumsum Cumsum(price) Sums a certain price on the whole data loaded

CurrentDayOfWeek CurrentDayOfWeek Represents the current day of the week

CurrentHour CurrentHour Represents the current hour

CurrentMinute CurrentMinute Represents the current minute

CurrentMonth CurrentMonth Represents the current month

CurrentSecond CurrentSecond Represents the current second

CurrentTime CurrentTime Represents the current time (HHMMSS)

CurrentYear CurrentYear Represents the current year

CustomClose CustomClose[N] Constant which is customizable in the settings
window of the chart (default: Close)

Cycle Cycle(price) Cycle Indicator

V 6.0.1 – 20230103 www.prorealtime.com 53 / 64

Glossary

D

CODE SYNTAX FUNCTION

Date Date[N] Reports the date of each bar loaded on the
chart

DATETOBARINDEX DATETOBARINDEX(date) Allows you to use a date for the drawing
functions.

Day Day[N] Reports the day of each bar loaded in the chart

Days Days[N] Counter of days since 1900

Days TIMEFRAME(X Days) Set the period to "X Days" for further
calculations of the code.

DayOfWeek DayOfWeek[N] Day of the week of each bar

DClose DClose(N) Close of the nth day before the current one

Decimals Decimals Returns the number of decimals of the ticker

DEMA DEMA[N](price) Double Exponential Moving Average

DHigh DHigh(N) High of the nth bar before the current bar

Dialog DRAWTEXT("text",barindex,cl
ose,Dialog,Bold, 10)

Dialog font applied to text

DI DI[N](price) Represents DI+ minus DI-

DIminus DIminus[N](price) Represents the DI- indicator

DIplus DIplus[N](price) Represents the DI+ indicator

DivergenceCCI DivergenceCCI[Div1,Div2,Div
3,Div4]

Indicator for detecting discrepancies between
price and the CCI.

DivergenceMACD DivergenceMACD[Div1,Div2,D
iv3,Div4](close)

Indicator for detecting divergences between the
price and the MACD.

DLow DLow(N) Low of the nth day before the current one

DO See FOR and WHILE Optional instruction in FOR loop and WHILE
loop to define the loop action

DonchianChannelCenter DonchianChannelCenter[N] Middle channel of the Donchian indicator for N
periods.

DonchianChannelDown DonchianChannelDown[N] Lower channel of the Donchian indicator for N
periods.

DonchianChannelUP DonchianChannelUp[N] Upper channel of the Donchian indicator for N
periods.

DOpen DOpen(N) Open of the nth day before the current one

DOTTEDLINE STYLE(DOTTEDLINE1/2/3/4,
width)

Style applicable to the features of an object.

DOWNTO See FOR Instruction used in FOR loop to process the loop
with a descending order

DPO DPO[N](price) Detrended Price Oscillator

V 6.0.1 – 20230103 www.prorealtime.com 54 / 64

Glossary

CODE SYNTAX FUNCTION

DRAWARROW DRAWARROW(x1,y1) Draw an arrow pointing right at the selected
point. Note: all drawing instructions mentioned
hereafter are compatible with version 10.3 and
higher of the platform

DRAWARROWDOWN DRAWARROWDOWN(x1,y1) Draw a down at the selected point

DRAWARROWUP DRAWARROWUP(x1,y1) Draw an up arrow at the selected point

DRAWBARCHART DRAWBARCHART(open,high,
low,close)

Draws a custom bar on the chart. Open, high,
low, and close can be constants or variables

DRAWCANDLE DRAWCANDLE(open,high,low
,close)

Draws a custom candlestick. Open, high, low,
and close can be constants or variables

DRAWELLIPSE DRAWELLIPSE(x1,y1,x2,y2) Draws an ellipse on the chart

DRAWHLINE DRAWHLINE(y1) Draws a horizontal line on the chart at the
selected point

DRAWLINE DRAWLINE(x1,y1,x2,y2) Draws a line on the chart between the two
selected points

DRAWONLASTBARONLY DEFPARAM
DrawOnLastBarOnly = true

Parameter that lets you draw drawn objects on
the last bar only

DRAWPOINT DRAWPOINT(x1,y1, optional
size)

Draw a point on the chart

DRAWRAY DRAWRAY(x1,y1,x2,y2) Draw a ray on the chart

DRAWRECTANGLE DRAWRECTANGLE(x1,y1,x2,
y2)

Draws a rectangle on the chart

DRAWSEGMENT DRAWSEGMENT(x1,y1,x2,y2) Draws a segment on the chart

DRAWTEXT DRAWTEXT("your text", x1,
y1)

Adds a text box on the chart at at the selected
point with your text

DRAWVLINE DRAWVLINE(x1) Draws a vertical line on the chart

DynamicZoneRSIDown DynamicZoneRSIDown[rsiN,
N]

Lower band of the Dynamic Zone RSI indicator.

DynamicZoneRSIUp DynamicZoneRSIUp[rsiN, N] Upper band of the Dynamic Zone RSI indicator.

DynamicZoneStochastic
Down

DynamicZoneStochasticDown
[N]

Lower band of the Dynamic Zone Stochastic
indicator.

DynamicZoneStochastic
Up

DynamicZoneStochasticUp[N] Upper band of the Dynamic Zone Stochastic
indicator.

V 6.0.1 – 20230103 www.prorealtime.com 55 / 64

Glossary

E

CODE SYNTAX FUNCTION

EaseOfMovement EaseOfMovement[I] Ease of Movement indicator

ElderrayBearPower ElderrayBearPower[N](close) Elder ray Bear Power indicator

ElderrayBullPower ElderrayBullPower[N](close) Elder ray Bull Power indicator

ELSE See IF/THEN/ELSE/ENDIF Instruction used to call the second condition of
If-conditional statements

ELSEIF See
IF/THEN/ELSIF/ELSE/ENDIF

Stands for Else If (to be used inside of
conditional loop)

EMV EMV[N] Ease of Movement Value indicator

ENDIF See IF/THEN/ELSE/ENDIF Ending Instruction of IF-conditional statement

EndPointAverage EndPointAverage[N](price) End Point Moving Average of a

EXP EXP(a) Mathematical Function "Exponential"

ExponentialAverage ExponentialAverage[N](price) Exponential Moving Average

F - G

CODE SYNTAX FUNCTION

FractalDimensionIndex FractalDimensionIndex[N]
(close)

Fractal Dimension Index indicator.

FOR/TO/NEXT FOR i=a TO b DO a NEXT FOR loop (processes all the values with an
ascending (TO) or a descending order
(DOWNTO))

ForceIndex ForceIndex(price) Force Index indicator (determines who controls
the market (buyer or seller)

FLOOR FLOOR(N, m) Returns the largest number less than N with a
precision of m digits after the decimal point

GetTimeFrame GetTimeFrame Returns the number of seconds equivalent to
the current code time period (ex: 3600 for a one
hour time period)

V 6.0.1 – 20230103 www.prorealtime.com 56 / 64

Glossary

H

CODE SYNTAX FUNCTION

High High[N] High of the current bar or of the nth last bar

Highest Highest[N](price) Highest price over a number of bars to be
defined

HighestBars HighestBars[N] Returns the candlestick offset of the last highest
value

HISTOGRAM RETURN close
STYLE(HISTOGRAM,
lineWidth)

Apply the histogram style on the returned value

HistoricVolatility HistoricVolatility[N](price) Historic Volatility (or statistic volatility)

Hour Hour[N] Represents the hour of each bar loaded in the
chart

Hours TIMEFRAME(X Hours) Sets the period to "X Hours" for further code
calculations.
See Multi-timeframe instructions

HullAverage HullAverage[N](close) Designates the Hull Average indicator

I - J - K

CODE SYNTAX FUNCTION

IF/THEN/ENDIF IF a THEN b ENDIF Group of conditional instructions without second
instruction

IF/THEN/ELSE/ENDIF IF a THEN b ELSE c ENDIF Group of conditional instructions

IntradayBarIndex IntradayBarIndex[N] Counts how many bars are displayed in one day
on the whole data loaded

INDEX ANCHOR(TOPLEFT,INDEX,Y
SHIFT)

Define the point value of the object on the
horizontal axis as a barindex value.

Italic DRAWTEXT("text",barindex,cl
ose,Serif,Italic, 10)

Italic style to be applied to the text

KeltnerBandCenter KeltnerBandCenter[N] Central band of the Keltner indicator of N
periods.

KeltnerBandDown KeltnerBandDown[N] Lower band of the Keltner indicator of N
periods.

KeltnerBandUp KeltnerBandUp[N] Upper band of the Keltner indicator of N
periods.

KijunSen KijunSen[TPeriod,KPeriod,SP
eriod]

Returns the KijunSen value of the Ichimoku
indicator

V 6.0.1 – 20230103 www.prorealtime.com 57 / 64

Glossary

L

CODE SYNTAX FUNCTION

LEFT ANCHOR(LEFT,INDEX,YSHIFT) Anchor to the left of the chart

LINE STYLE(LINE, lineWidth) Standard line style

LinearRegression LinearRegression[N](price) Linear Regression indicator

LinearRegressionSlope LinearRegressionSlope[N](price) Slope of the Linear Regression indicator

LOG LOG(a) Mathematical Function "Neperian logarithm"
of a

Low Low[N] Low of the current bar or of the nth last bar

Lowest Lowest[N](price) Lowest price over a number of bars to be
defined

LowestBars LowestBars[N] Returns the candlestick offset of the last
lowest value

M

CODE SYNTAX FUNCTION

MACD MACD[S,L,Si](price) Moving Average Convergence Divergence
(MACD) in histogram

MACDline MACDLine[S,L,Si](price) MACD line indicator

MACDSignal MACDSignal[S,L,Si](price) MACD Signal line indicator

MassIndex MassIndex[N] Mass Index Indicator applied over N bars

MAX MAX(a,b) Mathematical Function "Maximum"

MedianPrice MedianPrice Average of the high and the low

MIDDLE ANCHOR(MIDDLE,INDEX,YS
HIFT)

Anchoring in the middle of the chart

MIN MIN(a,b) Mathematical Function "Minimum"

Minute Minute Represents the minute of each bar loaded in the
chart

Minutes TIMEFRAME(X Minutes) Sets the period to "X Minutes" for the following
code calculations.
See Multi-timeframe instructions

MOD a MOD b Mathematical Function "remainder of the
division"

Momentum Momentum[I] Momentum indicator (close – close of the nth
last bar)

MoneyFlow MoneyFlow[N](price) MoneyFlow indicator (result between -1 and 1)

MoneyFlowIndex MoneyFlowIndex[N] MoneyFlow Index indicator

Monospaced DRAWTEXT("text",barindex,cl Monospaced font applied to text

V 6.0.1 – 20230103 www.prorealtime.com 58 / 64

Glossary

CODE SYNTAX FUNCTION

ose,Monospaced,Italic, 10)

Month Month[N] Represents the month of each bar loaded in the
chart

Months TIMEFRAME(X Months) Sets the period to "X Months" for the following
code calculations.

N

CODE SYNTAX FUNCTION

NEXT See FOR/TO/NEXT Ending Instruction of FOR loops

NOT Not A Logical Operator NOT

O

CODE SYNTAX FUNCTION

OBV OBV(price) On-Balance-Volume indicator

ONCE ONCE VariableName =
VariableValue

Introduces a definition statement which will be
processed only once

Open Open[N] Open of the current candlestick or of the nth
previous candlestick

OpenDay OpenDay[N] Designates the opening day of the current
candlestick or the nth previous candlestick

OpenDayOfWeek OpenDay[N] Designates the day of the week of the opening
of the current candlestick or the nth previous
candlestick

OpenHour OpenHour[N] Designates the opening time of the current
candlestick or the nth previous candlestick

OpenMinute OpenMInute[N] Designates the opening minute of the current
candlestick or the nth previous candlestick

OpenMonth OpenMonth[N] Designates the opening month of the current
candlestick or the nth previous candlestick

OpenSecond OpenSecond[N] Designates the opening second of the current
candlestick or the nth previous candlestick

OpenTime OpenTime[N] Designates the time (HHMMSS) of the opening
of the current candlestick or the nth previous
candlestick

OpenTimestamp OpenTime[N] Designates the UNIX opening timestamp of the
current candlestick or the nth previous
candlestick

OpenWeek OpenWeek[N] Designates the opening week of the current
candlestick or the nth previous candlestick

OpenYear OpenYear[N] Designates the opening year of the current

V 6.0.1 – 20230103 www.prorealtime.com 59 / 64

Glossary

CODE SYNTAX FUNCTION

candlestick or the nth previous candlestick

OR a OR b Logical OR Operator

P - Q

CODE SYNTAX FUNCTION

Pipsize Pipsize Size of a pip (forex)

Point RETURN close
STYLE(POINT, pointWidth)

Apply the dot style on the returned value

PositiveVolumeIndex PriceVolumeIndex(price) Positive Volume Index indicator

POW POW(N,P) Returns the value of N at power P.

PriceOscillator PriceOscillator[S,L](price) Percentage Price oscillator

PRTBANDSUP pbUp = PRTBANDSUP Gives the value of the upper band of PRTBands

PRTBANDSDOWN pbDown = PRTBANDSUP Gives the value of the lower band of PRTBands

PRTBANDSHORTTERM pbShort =
PRTBANDSSHORTTERM

Gives the value of the short term band of
PRTBands

PRTBANDMEDIUMTERM pbMedium =
PRTBANDSMEDIUMTERM

Gives the value of the long term band of
PRTBands

PVT PVT(price) Price Volume Trend indicator

R

CODE SYNTAX FUNCTION

R2 R2[N](price) R-Squared indicator (error rate of the linear
regression on price)

RANDOM RANDOM(Min, Max) Generates a random integer between the
included Min and Max bounds.

Range Range[N] calculates the Range (High minus Low)

Repulse Repulse[N](price) Repulse indicator (measure the buyers and
sellers force for each candlestick)

RepulseMM RepulseMM[N,PeriodMM,fact
orMM](price)

Moving Average line of the Repulse indicator.

RETURN RETURN Result Instruction returning the result

RIGHT ANCHOR(RIGHT,INDEX,YSH
IFT)

Anchor to the right of the chart

ROC ROC[N](price) Price Rate of Change indicator

RocnRoll RocnRoll(price) Designates the RocnRoll indicator based on the
ROC indicator.

ROUND ROUND(a) Mathematical Function "Round a to the nearest

V 6.0.1 – 20230103 www.prorealtime.com 60 / 64

Glossary

CODE SYNTAX FUNCTION

whole number"

RSI RSI[N](price) Relative Strength Index indicator

S

CODE SYNTAX FUNCTION

SansSerif DRAWTEXT("text",barindex,cl
ose,SansSerif,Italic, 10)

SansSerif font applied to text

SAR SAR[At,St,Lim] Parabolic SAR indicator

SARatdmf SARatdmf[At,St,Lim](price) Smoothed Parabolic SAR indicator

Second TIMEFRAME(X Seconds) Sets the period to "X Seconds" for further code
calculations.
See Multi-period instructions

SenkouSpanA SenkouSpanA[TPeriod,KPerio
d,SPeriod]

Returns the SenkouSpanA value of the
Ichimoku indicator

SenkouSpanB SenkouSpanB[TPeriod,KPerio
d,SPeriod]

Returns the SenkouSpanB value of the
Ichimoku indicator

Serif DRAWTEXT("text",barindex,cl
ose,Serif,Italic, 10)

Serif font applied to text

SIN SIN(a) Mathematical Function "Sine"

SGN SGN(a) Mathematical Function "Sign of" a (it is positive
or negative)

SMI SMI[N,SS,DS](price) Stochastic Momentum Index indicator

SmoothedRepulse SmoothedRepulse[N](price) Smoothed Repulse indicator

SmoothedStochastic SmoothedStochastic[N,K]
(price)

Smoothed Stochastic indicator

SQUARE SQUARE(a) Mathematical Function "a Squared"

SQRT SQRT(a) Mathematical Function "Squared Root" of a

Standard DRAWTEXT("text",barindex,cl
ose,Serif,Standard, 10)

Standard style applied to text

STD STD[N](price) Statistical Function "Standard Deviation"

STE STE[N](price) Statistical Function "Standard Error"

STYLE STYLE(dottedline, width) Applies the dottedline style type with a width on
an object.

Stochastic Stochastic[N,K](price) %K line of the Stochastic indicator

Stochasticd Stochasticd[N,K,D](price) %D line of the Stochastic indicator

Summation Summation[N](price) Sums a certain price over the N last candlesticks

Supertrend Supertrend[STF,N] Super Trend indicator

V 6.0.1 – 20230103 www.prorealtime.com 61 / 64

Glossary

T

CODE SYNTAX FUNCTION

TAN TAN(a) Mathematical Function "Tangent" of a

TEMA TEMA[N](price) Triple Exponential Moving Average

TenkanSen TenkanSen[TPeriod,KPeriod,S
Period]

Returns the TenkanSen value of the Ichimoku
indicator

THEN See IF/THEN/ELSE/ENDIF Instruction following the first condition of "IF"

Ticks TIMEFRAME(X Ticks) Sets the period to "X Ticks" for further code
calculations.
See Multi-period instructions

Ticksize Ticksize Minimum price variation of the instrument in the
chart

Time Time[N] Represents the time of each bar loaded in the chart

TimeSeriesAverage TimeSeriesAverage[N](price) Temporal series moving average

Timestamp Timestamp[N] UNIX date of the close of the nth previous
candlestick

TO See FOR/TO/NEXT Directional Instruction in the "FOR" loop

Today YYYYMMDD Today's date

TOP ANCHOR(TOP,INDEX,YSHIF
T)

Anchor at the top of the chart

TOPLEFT ANCHOR(TOPLEFT,INDEX,Y
SHIFT)

Anchor at the top left of the chart

TOPRIGHT ANCHOR(TORIGHTP,INDEX,
YSHIFT)

Anchor at the top right of the chart

TotalPrice TotalPrice[N] (Close + Open + High + Low) / 4

TR TR(price) True Range indicator

TriangularAverage TriangularAverage[N](price) Triangular Moving Average

TRIX TRIX[N](price) Triple Smoothed Exponential Moving Average

TypicalPrice TypicalPrice[N] Represents the Typical Price (Average of the
High, Low and Close)

U

CODE SYNTAX FUNCTION

Undefined a = Undefined Sets a the value of a variable to undefined

Unset unset($MyArray) Resets the data in the table

V 6.0.1 – 20230103 www.prorealtime.com 62 / 64

Glossary

V

CODE SYNTAX FUNCTION

VALUE ANCHOR(TOP, INDEX,
VALUE)

Sets the value of the object point for the vertical
axis to be a price

Variation Variation(price) Difference between the close of the last bar and
the close of the current bar in %

ViMinus ViMinus[N] Bottom band of the Vortex indicator

ViPLus ViPlus[N] Top band of the Vortex indicator

Volatility Volatility[S, L] Chaikin volatility

Volume Volume[N] Volume indicator

VolumeOscillator VolumeOscillator[S,L] Volume Oscillator

VolumeROC VolumeROC[N] Volume of the Price Rate Of Change

W

CODE SYNTAX FUNCTION

Weeks TIMEFRAME(X Weeks) Sets the period to "X Weeks" for further code
calculations.
See Multi-timeframe instructions

WeightedAverage WeightedAverage[N](price) Represents the Weighted Moving Average

WeightedClose WeightedClose[N] Average of (2 * Close), (1 * High) and (1 * Low)

WEND See WHILE/DO/WEND Ending Instruction of WHILE loop

WHILE/DO/WEND WHILE (condition) DO (action)
WEND

WHILE loop

WilderAverage WilderAverage[N](price) Represents Wilder Moving Average

Williams Williams[N](close) %R of the Williams indicator

WilliamsAccumDistr WilliamsAccumDistr(price) Accumulation/Distribution of Williams Indicator

X

CODE SYNTAX FUNCTION

XOR a XOR b Logical Operator eXclusive OR

XSHIFT ANCHOR(TOP,
XSHIFT,VALUE)

Defines the value of the object point for the
horizontal axis as an offset

V 6.0.1 – 20230103 www.prorealtime.com 63 / 64

Glossary

Y

CODE SYNTAX FUNCTION

Year Year[N] Year of the bar n periods before the current bar

Years TIMEFRAME(X Years) Set the period to "X Year(s)" for further code
calculations
See Multi-Timeframe instructions

Yesterday Yesterday[N] Date of the day preceding the bar n periods
before the current bar

YSHIFT ANCHOR(TOP, INDEX,
YSHIFT)

Defines the value of the object point for the
vertical axis as an offset

Z

CODE SYNTAX FUNCTION

ZigZag ZigZag[Zr](price) Represents the Zig-Zag indicator introduced in
the Elliott waves theory

ZigZagPoint ZigZagPoint[Zp](price) Represents the Zig-Zag indicator in the Elliott
waves theory calculated on Zp points

Other

CODE FUNCTION CODE FUNCTION

+ Addition Operator <> Difference Operator

- Subtraction Operator < Strict Inferiority Operator

* Multiplication Operator > Strict Superiority Operator

/ Division Operator <= Inferiority Operator

= Equality Operator >= Superiority Operator

V 6.0.1 – 20230103 www.prorealtime.com 64 / 64

www.prorealtime.com

https://www.prorealtime.com/

	Introduction to ProBuilder
	Chapter I: Fundamentals
	Using ProBuilder
	Indicator creation quick tutorial
	Programming window keyboard shortcuts

	Specificities of ProBuilder programming language
	Financial constants
	Price and volume constants adapted to the timeframe of the chart
	Daily price constants
	Temporal constants
	Constants derived from price
	The Undefined constant

	How to use pre-existing indicators?
	Adding customizable variables

	Chapter II: Math Functions and ProBuilder instructions
	Control Structures
	Conditional IF instruction
	One condition, one result (IF THEN ENDIF)
	One condition, two results (IF THEN ELSE ENDIF)
	Sequential IF conditions
	Multiple conditions (IF THEN ELSE ELSIF ENDIF)

	Iterative FOR Loop
	Ascending loop (FOR, TO, DO, NEXT)
	Descending loop (FOR, DOWNTO, DO, NEXT)

	Conditional WHILE Loop
	BREAK
	With WHILE
	With FOR

	CONTINUE
	With WHILE
	With FOR

	ONCE

	Mathematical Functions
	Common unary and binary Functions
	Common mathematical operators
	Charting comparison functions
	Summation functions
	Statistical functions

	Logical operators
	ProBuilder instructions
	RETURN
	Comments
	CustomClose
	CALCULATEONLASTBARS
	CALL
	AS
	COLOURED

	Drawing instructions
	Additional parameters

	Multi-period instructions
	List of available time frames

	Arrays (Data tables)
	Specific functions

	Chapter III: Practical aspects
	Create a binary or ternary indicator : why and how ?
	Creating stop indicators to follow a position
	Static Take Profit STOP
	Static STOP loss
	Inactivity STOP
	Trailing Stop

	Chapter IV: Exercises
	Candlesticks patterns
	Indicators

	Glossary

